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Letter to the Editor

Remarks on an algorithm for reverse convex
programs

H.D. TUAN
Department of Information and Control, Toyota Technological Institute, Hisakata 2-12-1, Tempaku,
Nagoya 468-8511, Japan

An algorithm has been proposed in Strekalovsky and Tsvendor, 1998 for solving
the global optimization problem:

minf (x) s.t. x ∈ S, g(x) > 0 (P)

wheref (x) is a continuous function,S a closed convex set inRn, and g(x) a
differentiable convex function, satisfying the following assumptions:
(i) S ⊂ int(dom)g;
(ii) the problem has a finite optimal solution;
(iii) no global optimal solution exists such thatg(x) > 0;
(iv) there exists anx ∈ Rn such thatg(x) < 0;
(vi) for everyy of the level surfaceg(y) = 0 there exists av = v(y) ∈ S satisfying

〈g′(y), v − y〉 > 0 (1)

The last condition implies that 0 is a not a local maximum ofg(x) overS, hence
the problem (P) is stable (see e.g. Horst and Tuy, 1990, Lemma X.2). From the
assumptions it then follows that a necessary and sufficient condition for a feasible
solutionz to be optimal is

{x ∈ S| f (x) 6 f (z)} ⊂ {x| g(x) 6 0}. (2)

(see, e.g., Tuy, 1995, Proposition 8). Since the closed convex setG := {x| g(x) 6
0} equals the intersection of all its supporting halfspaces:G = ∩g(y)=0{x| 〈g′(y), x−
y〉 6 0}, condition (2) is equivalent to requiring that

sup
y∈∂G

sup
x∈Dz
〈g′(y), x − y〉 6 0, (3)

where∂G = {y|g(y) = 0}, Dz := {x ∈ S| f (x) 6 f (z)}.
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Based on this optimality criterion (condition (E2)), the algorithm proposed in
Strekalovsky and Tsvendor, 1998 for solving (P), consists basically in the follow-
ing.

Let z ∈ ∂G be a feasible solution which is also a stationary point computed by
any local optimization procedure. Solve the problem

γ (z) := sup
y∈∂G

sup
x∈Dz
〈g′(y), x − y〉. (4)

If γ (z) 6 0 thenz is optimal solution of (P). Otherwise, let(w, u) ∈ ∂G × Dz

satisfy 〈g′(w), u − w〉 > 0. Thenu ∈ S, f (u) 6 f (z), g(u) > g(w) = 0, so
starting fromu one can compute a new stationary pointz′ ∈ ∂G better thanz and
the cycle can be repeated fromz′ in place ofz.

The crucial point in this scheme is how to solve (4). In Strekalovsky and Ts-
vendor, 1998 the following procedure is proposed:
(1) Select a gridR = {y1, . . . , yN } ⊂ ∂G.
(2) For eachi = 1, . . . , N solve

sup
x∈Dz
〈g′(yi), x〉 (PLi)

obtaining an optimal solutionui ∈ Dz, then solve
sup
y∈∂G
〈g′(y), ui − y〉 (LVi)

obtaining an optimal solutionwi ∈ ∂G.
(3) Computeη := maxi=1,... ,N 〈g′(wi), ui − wi〉. If η > 0, then(w, u) has been

found such that〈g′(w), u− w〉 > 0.
(4) If η 6 0, acceptz as an optimal solution of (P).
(To make the basic idea clearer we suppose that every subproblem involved is
solved exactly. In the actual algorithm stationary points are computed with tol-
eranceε and the subproblems in 2) are solved with toleranceδ, so in 4) optimality
is interpreted with tolerance(ε, δ)).

In Strekalovsky and Tsvendor, 1998 it is reported that the above algorithm has
solved successfully problems of dimension up to 400. Unfortunately, all the test
problems used are obtained merely from an extremely easy problem (P1) inRn by
considering different values ofn. A global optimal solution of (P1) in whatever
dimensionn can be readily found by simple computations or can be easily com-
puted using other known algorithms. Therefore the fact that the algorithm can solve
these problems with dimensionn = 400 or higher does not say anything about
its efficiency. Furthermore, the question of how to construct a suitable setR for
problems whose global optimal solution is known in advance does not present any
interest.

In fact, the algorithm suffers from several serious difficulties:
(i) The “linearized" problems(PLi) and the “level" problems(LVi), i = 1, . . . ,
N are nonconvex problems very hard to solve, iff (x) is nonconvex or/and
g(x) is nonquadratic. For these problems no algorithm is currently available,
so the algorithm reduces the original problem (P) to a sequence of subproblems
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which, in principle, are still very difficult, unlessf (x) is convexand g(x) is
quadratic.

(ii) Even if (PLi) and (LVi) can be solved efficiently (e.g. whenf (x) is con-
vex andg(x) is convex quadratic, as in all computational experiments repor-
ted in the paper), there is no guarantee that the accepted solution is correct.
Specifically, sinceR is a grid of∂G, we have

max
y∈R

max
x∈Dz
〈g′(y), u − y〉 6 η := max

i=1,... ,N
〈g′(wi), ui − wi〉

6 max
y∈∂G

max
x∈Dz
〈g′(y), u − y〉,

so fromη 6 0 it does not generally follow that (3) is satisfied. Therefore a grid
R is defined to be a “resolving set" (more precisely, a(z, ε, δ)-resolving set) if

η = max
i=1,... ,N

〈g′(wi), ui − wi〉 6 0 (5)

implies the optimality ofz, with tolerancesε, δ. However, the crucial question
of how to construct a resolving set is not addressed seriously, and we must be
content with such vague indications as “one must have a deep understanding
of the nature and the structure of the problem and the condition (3)", etc.

Thus, the algorithm is short on theoretical foundation and when it is implement-
able (i.e., whenf (x) is convex andg(x) is quadratic) there is no guarantee that the
solution it provides is correct. The claim that the algorithm can solve large scale
reverse convex programs of dimension up to 400 is misleading.

Finally, we note that the problem (3) is no easier than (2). Whenf (x) is con-
vex, andg(x) is convex but nonquadratic, (2) is a convex maximization prob-
lem, solvable by currently available algorithms, while (3) is a difficult nonconvex
problem.
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